

Reducing Cancer Risks for the Fire Service

Gavin Horn

IFSI Research

F IRE A PPARATUS MANUFACTURERS' A SSOCIATION

IFS RESEARCH

Steve Kerber Kenny Fent Denise Smith

Cancer Risks for the Fire Service

- Awareness of cancer risks is increasing
- Challenges to fully characterize the risk and impacts
 - IAFF LODD database 864 members between 2005-15
 - Mounting epidemiological evidence
 - Increased risk for cancer incidence & mortality

Excess Cancer Risk¹

Outcome	Obs	Mortality SMR ³ (95% CI)	Obs	Incidence SIR ⁴ (95% CI)
All mortality	12,028	0.99 (0.97, 1.01)	NA	NA
All Cancers	3,285	1.14 (1.10, 1.18)	4,461	1.09 (1.06, 1.12)
Esophagus	113	1.39 (1.14, 1.67)	90	1.62 (1.31, 2.00)
Intestine	326	1.30 (1.16, 1.44)	398	1.21 (1.09, 1.33)
Lung	1,046	1.10 (1.04, 1.17)	716	1.12 (1.04, 1.21)
Kidney	94	1.29 (1.05, 1.58)	166	1.27 (1.09, 1.48)
Oral cavity ²	94	1.40 (1.13, 1.72)	174	1.39 (1.19, 1.62)
Mesothelioma	12	2.00 (1.03, 3.49)	35	2.29 (1.60, 3.19)

- 1. Cancers with statistically significant excesses in mortality and incidence with U.S rates referent (Daniels et al. Occup Environ Med 2014; 71(6): 388-397).
- 2. Oral cavity includes lip (excluding skin of the lip), tongue, salivary glands, gum, mouth, pharynx, oropharynx, nasopharynx, and hypopharynx
- 3. SMR = standardized mortality ratio
- 4. SIR = standardized incidence ratio

Occupational Exposure to Fireground Chemicals

- Awareness of cancer risks is increasing
- Challenges to fully characterize the risk and impacts
 - IAFF LODD database 864 members between 2005-15
 - Mounting epidemiological evidence
 - Increased risk for cancer incidence & mortality
- Need to characterize our 'risk' to positively impact outcomes

Complex Exposure Pathways

- <u>Source</u>: where the chemicals originate
- <u>Composition</u>: makeup and physical state of the chemicals
- <u>Transport / contact</u>: how the chemicals come into contact with the firefighter
- <u>Intensity</u>: exposure concentration
- <u>Duration</u>: length of the exposure time
- <u>Absorption route</u>: how the chemicals enter the firefighter's body (inhalation, dermal absorption, or ingestion)
- <u>Dose</u>: amount of chemical deposited in the firefighter's body

Potential Sources of Exposure

Residential fire (photo by IAFF.org)

Dumpster fire (public domain)

Vegetation fire (photo by Physics.org)

Industrial fire (photo by Eastern Daily Express)

Car fire (photo by NIOSH)

Training fire (photo by NIOSH)

NIOSH HHE Study 2010

Evaluation of Dermal Exposure to Polycyclic Aromatic Hydrocarbons in Fire Fighters

Report No. 2010-0156-3196 Summary December 2013

U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

National Institute for Occupational Safety and Health

NIOSH HHE Study 2010

Evaluation of Dermal Exposure to Polycyclic Aromatic Hydrocarbons in Fire Fighters

U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Systemic Exposure to PAHs and Benzene in Firefighters Suppressing Controlled Structure Fires

BOHS

Kenneth W. Fent^{1*}, Judith Eisenberg¹, John Snawder², Deborah Sammons², Joachim D. Pleil³, Matthew A. Stiegel⁴, Charles Mueller¹, Gavin P. Horn⁵ and James Dalton⁶

ABSTRACT

rotection against dermal exposure to contaminant ion is unknown. We explored the dermal contribution d polycyclic aromatic hydrocarbone (PAHa) and other aromatic hydrocarbons in firefigh

Volatile Organic Compounds Off-gassing from Firefighters' Personal Protective Equipment Ensembles after Use

Kenneth W. Fert, ¹Douglas E. Evans,² Donald Booher,¹ J. Matthew A. Stiegel.⁸ Gavin P. Horn,⁶ and James Dalton⁶

Hazard Evaluations, and Faild Studies, National on, Grange School of Likobal Public Health, University of

Off-Gassing Contaminants from Firefighters' Personal Protective Equipment

BY KENBETH W. FENT. GAVIN P. HORN. EATHERINE M. EIRK. AND MICHAEL B. LOGAN

de duting firefor

rune of their leigh a ets. An examplest, flame

I by NIOSH to sample off-gassing IVE encembles. After closing the Fd, t

from these two independent studies	Broults
wrow secondly outcomed in the same	investigatory in both studies measure
instar of the pase seviewed Journal of	deveted levels of a veriety of VOOn offs
Ovcupational and Rostenamental Hepisone	stra hors PPS conservation postforefugical
Quan 1015).	interpaned in preferfugiting levelst, with
Title I describes the similarities	similar factors for bornoon, toksent of
and differences of these two studies.	Insume, videous, and stymes (78288-2)
The basic pressies of both studies was	CFR3 inwerkanton also measured sizv
the manus-to test PPE or opening for	levels of method lacks and loctmen, actual-
of gamming conteminants before and	debyde, cronomaldebyde, henunidebyde
After being worn awith fubring lives in 1	and hadrovane respects (\$121), HCN was
structures with typical scen-and-con-	measured at concentrations up to 50x
writes for real energy (NUNWER) or community	Sinders there are other correspond. MICE

FIRE ENGINEERENG September 2015 55

RESEARCH

National Institute for Occupational Safety and Health

IFSI-UL FSRI-NIOSH Fireground Study

Funding

This project was also made possible through a partnership with the CDC Foundation and received additional support through interagency agreement between the National Institute for Occupational Safety and Health and the National Institute of Environmental Health Sciences (AES15002-001) as a collaborative National Toxicology Program research activity. *The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health. Mention of any company name or product does not constitute endorsement by NIOSH.*

Cardiovascular & Chemical Exposure Risks in Modern Firefighting Interim Report – Summary

Full Report can be downloaded from:

https://www.fsi.illinois.edu/documents/research/CardioChemRisksModernFF_InterimReport2016.pdf

Purposes of the Study

This DHS/FEMA AFG funded study was designed to better understand how operating in a modern fire environment is related to the two leading health issues facing firefighters; namely cardiovascular events and chemical exposures related to carcinogenic risk. We investigated the impact of different tactics (traditional interior attack vs a transitional attack) and different firefighting location/assignment (interior attack, outside operations, outside command, overhaul] as well as measures such as skin cleaning and gross on scene decon to affect these risks.

Motivation for Study

Significant advances have been made in our understanding of the hazards associated with structural firefighting.

- Research has provided a greater understanding of the development, propagation and dangers of modern
 residential fires. The fire service has been provided with important tactical guidance that may potentially
 increase firefighter effectiveness while decreasing risk.
- Sudden cardiac events are the leading cause of duty-related deaths among firefighters and they are far more likely to occur after fire suppression activity. Substantial evidence suggests that firefighting leads to significant cardiovascular strain.
- Firefighters have an increased risk for several types of cancer. Fires produce hundreds of toxic compounds. Some are carcinogenic like benzene and certain polycyclic aromatic hydrocarbons (PAHs).

Despite these advances in understanding, important questions remain.

- What is the physiological and chemical impact of the different exposures experienced by firefighters
 employing differing tactics and conducting various job assignments on the fireground?
- How do factors related to firefighting effect cardiovascular responses under realistic modern fire
 environments? How effectively does the body recover over the 12 hours following a response?
- How and at what levels do toxic combustion products get into a firefighter's body? How much of the absorbed dose comes from skin absorption versus inhalation?

https://www.fsi.illinois.edu/content/research/ https://www.fsi.illinois.edu/content/research/reports.cfm

Interim Report

Cardiovascular & Chemical Exposure Risks in Modern Firefighting

Top Considerations Chemical Exposure Risk

- Know what's in the air may end up on PPE, skin and in the body
- Contamination on Firefighting PPE job assignment and decon
- 3. Skin contamination job assignment and decon

Compound measured	Carpet padding (n = 3)	Curtain liner (n = 1)	Foam from inner spring mattress (n = 2)	Foam topper for bed (n = 2)	Head-board padding (n = 1)	Chair cushion (n = 2)	Liner for chair cushion (n = 1)	Flat screen TV plastic (n = 1)
Polybrominated diphenyl ethers								
BDE 47	< 0.1 - 0.41	0.19	< 0.1	< 0.1 - 0.74	5,600	< 0.1 - 4.1	< 0.1	< 0.1
BDE 85	< 0.1	< 0.1	< 0.1	< 0.1	840	< 0.1 - 1.6	< 0.1	< 0.1
BDE 99	0.11 - 0.56	0.25	< 0.1 - 0.44	< 0.1 - 2.9	15,000	< 0.1 - 25	< 0.1	< 0.1
BDE 100	< 0.1	< 0.1	< 0.1	< 0.1 - 0.6	2,500	< 0.1 - 3.8	< 0.1	< 0.1
BDE 153	< 0.1 - 5.6	< 0.1	< 0.1	< 0.1 - 2.0	2,000	< 0.1 - 13	< 0.1	< 0.1
BDE 154	< 0.1	< 0.1	< 0.1	< 0.1 - 0.69	1,400	< 0.1 - 5.0	< 0.1	< 0.1
BDE 183	< 0.1 - 1.1	< 0.1	< 0.1	< 0.1 - 2.0	67	< 0.1	< 0.1	< 0.1
BDE 206	< 0.1 - 14	2.8	< 0.1 - 6.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BDE 209	0.41 - 102	440	< 0.1 - 61	< 0.1	< 0.1	< 0.1 - 0.68	< 0.1	< 0.1
Other brominated flame retardants								
TBBPA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TBB	0.38 - 3.2	910	< 0.1 - 0.5	< 0.1 - 7.5	< 0.1	18,500 - 26,750	68.5	< 0.1
ТВРН	0.22 - 5.7	340	< 0.1 - 1.2	< 0.1 - 3.7	< 0.1	5,800 - 6,380	19.6	< 0.1
DBDPE	< 0.1 - 0.53	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Organophosphate flame retardants								
TCEP	< 0.1	1.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ТСРР	59 - 630	5.4	< 0.1	< 0.1	8.4	< 0.1 - 1.3	< 0.1	< 0.1
TDCPP	240 - 9,100	1.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ТРР	0.43 - 3.8	4.0	0.16 - 0.23	< 0.1 - 1.3	1,690	1,400 - 7,380	22.6	19
ТСР	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Concentrations of flame retardants $(\mu g/g)^*$ in burn room furnishings

National Institute for Occupational Safety and Health

Example Data: Flame retardant in the Air (μ g/m³)

Compound	Fire period – Living	Overhaul period –	
measured	Room	Bedroom	
BDE 47	9.6	< 0.04	1
BDE 85	< 0.17	< 0.04	-
BDE 99	7.4	< 0.04	
BDE 100	< 0.17	< 0.04	
BDE 153	< 0.17	< 0.04	
BDE 154	8.7	< 0.04	100 m
BDE 183	< 0.17	< 0.04	- 181
BDE 206	< 0.17	< 0.04	
BDE 209	14	< 0.04	
TBBPA	12	< 0.04	
TBB	9.2	< 0.04	Poten
ТВРН	1.2	< 0.04	
DBDPE	< 0.17	< 0.04	 Conta
TCEP	< 0.25	< 0.06	Conta
ТСРР	< 0.25	< 0.06	
TDCPP	< 0.25	< 0.06	statio
ТРР	2000	14	
ТСР	220	1.9	
6/25/2015		IFSI	National Institute Occupational Safe
		RESEARCH	MOS

Potential source of:

- Contamination in cab
- Contamination in station dust

and Health

Particulate on Fireground

06130

06/27

Potential source of:

- **Contamination in cab**
- Additional exposure to lacksquareoutside firefighters

Downwind of smoke plume

Top Considerations Chemical Exposure Risk

- Know what's in the air may end up on PPE, skin and in the body
 - Flame retardants in the fuels and air born
 - VOCs inside and outside structure
 - Particulate from the fire and operating apparatus

Top Considerations Chemical Exposure Risk

- Know what's in the air may end up on PPE, skin and in the body
- Contamination on Firefighting PPE job assignment and decon

Example Data: PPE Surface Contamination with FR (ng/100 cm²)

RESEARCH

Next Innovation?

How do we best decon gloves? Need same attention as hoods!!

Compound	Post-fire	Post fire (right		
Measured	(jacket)*	glove)		
BDE 47	48	35		
BDE 85	< 1	< 1		
BDE 99	< 1	40		
BDE 100	< 1	12		
BDE 153	< 1	< 1		
BDE 154	< 1	< 1		
BDE 183	< 1	< 1		
BDE 206	< 1	< 1		
BDE 209	1,200	1,200		
TBBPA	< 1	30		
TBB	22	30		
TBPH	11	14		
DBDPE	140	290		
TCEP	5.5	< 1.5		
ТСРР	< 1.5	200		
TDCPP	190	460		
ТРР	2	3,100		
ТСР	< 0.2	360		
National Institute for Occupational Safety and Health				

Gross On-Scene PAH Decontamination

Example Data: Air Concentrations of VOCs off-gassing from PPE (ppb)

Fireground Operations:

Allow PPE to off-gas outside of the cab

Compound Measured	Wet decon			
	Pre-fire	Post-fire*	Post-decon	
Benzene	< 0.6	75	< 0.6	
Toluene	< 0.5	19	< 0.5	
Ethyl benzene	< 0.4	3.3	< 0.4	
Xylenes	< 0.4	2.2	< 0.4	
Styrene [†]	< 0.4	120	0.42	

HCN follows similar trend

National Institute for Occupational Safety and Health

Top Considerations Chemical Exposure Risk

- 1. Know what's in the air may end up on PPE, skin and in the body
- 2. Contamination on Firefighting PPE job assignment and decon
 - Significantly depends on job assignment
 - Gloves may be more contaminated than bunkers
 - Gross decon using water, soap and brush can remove 80-90% of contamination
 - Offgassing in cab can provide additional exposure to firefighters
- 3. Skin contamination job assignment and decon

Skin Contamination

RESEARCH

- Hands may be more heavily contaminated than neck
 - Interior firefighters!
 - Water/sweat may carry contaminants through interfaces
- Neck heavily contaminated for Inside firefighters
 - Also outside vent and overhaul
 - Contamination found even if entry is never made!

- Skin cleansing wipes
 - Reduced contamination by 54% (when present)

Options from Manufacturers?

Healthy In, Healthy Out; Washington State; Beth Gallup

National Institute for Occupational Safety and Health

Top Considerations Chemical Exposure Risk

- 1. Know what's in the air
 - Flame retardants in the fuels and air born
 - VOCs inside and outside structure
 - Particulate from the fire and operating apparatus
- 2. Contamination on Firefighting PPE job assignment and decon
 - Significantly depends on job assignment
 - Gloves may be more contaminated than bunkers
 - Gross decon using water, soap and brush can remove 80-90% of contamination
 - Offgassing in cab can provide additional exposure to firefighters
- 3. Skin contamination job assignment and decon
 - Contamination on the hands appears more significant than the neck
 - Skin wipes can remove ~50% of contamination on skin

Coming Soon ...

- Initial academic papers coming weeks/months – Open Access
- Final report and toolkit End 2017
- Biological uptake (?) of contaminants
- Training ground study
- Repeated cleaning of PPE
- Impact of new hood design
- Next questions...

Reducing Cancer Risks for the Fire Service

Gavin Horn

IFSI Research

F IRE A PPARATUS MANUFACTURERS' A SSOCIATION